Chapter 1

Carbohydrates, Lipids, and Proteins
Three Macronutrients

- Carbohydrates
- Lipids
- Proteins
Carbohydrates

- Three Classifications of Carbohydrates
 - Monosaccharides
 - Basic unit of carbohydrates
 - Oligosaccharides
 - 2-10 monosaccharides bonded chemically
 - Polysaccharides
 - 3 to thousands of sugar molecule linkages
Reaction driven by energy from sun interacting with chlorophyll

Leaves, wood, bark
cellulose, hemicellulose
Fruits
sugars, starch, cellulose
Grains
starch, cellulose
Vegetables
starch, cellulose
Monosaccharides

- Glucose or dextrose (blood sugar)
- Fructose (fruit sugar)
- Galactose (milk sugar)
Oligosaccharides

- The major oligosaccharide is the disaccharide or double sugar
 - Maltose = Glucose + Glucose
 - Lactose = Glucose + Galactose
 - Sucrose = Glucose + Fructose
Polysaccharides

• Plant polysaccharides
 - Starch is the storage form of carbohydrates in plants
 • Amylose
 • Amylopectin
 - Fiber occurs exclusively in plants
 • Cellulose
Daily Recommended Intake of Fiber

- Under 50
 - 38g for men
 - 25g for women
- Over 50
 - 30g for men
 - 21g for women
- Ratio of 3:1 for water-insoluble to soluble fiber
Glycogen Synthesis
Daily Recommendation of Carbohydrates

- Sedentary 70kg person
 - 300g or 40-50% of total calories
- Physically active person
 - 400-600g or 60% of total calories
- Athlete
 - 70% of total calories (8-10g per kg of body mass)
Review

Which classification of carbohydrate is made up of 3 to thousands of sugar molecules linked together?

a. Monosaccharides
b. Disaccharides
c. Polysaccharides
d. All of the above
Answer

Which classification of carbohydrate is made up of 3 to thousands of sugar molecules linked together?

a. Monosaccharides
b. Disaccharides
c. Polysaccharides
d. All of the above
Role of Carbohydrates

- Energy source
 - Energy is derived from the breakdown of blood-borne glucose
 - Muscle glycogen powers various forms of biologic work including muscle contraction
- Protein saver
 - Adequate carbohydrate intake helps to preserve tissue protein
Role of Carbohydrates (continued)

- Metabolic primer
 - The depletion of glycogen causes fat mobilization to exceed fat oxidation
 - Can lead to ketosis

- Fuel for the central nervous system
 - The brain almost exclusively uses blood glucose as its fuel source
 - Hypoglycemia is the reduction of blood glucose to <45mg/dL
Carbohydrate Dynamics in Exercise

- Intensity and duration determine the fuel mixture during exercise
 - High-intensity exercise
 - One hour of high-intensity exercise decreases liver glycogen by 55%
 - Two hours almost depletes the liver and muscle glycogen
Carbohydrate Dynamics in Exercise (continued)

- Moderate and prolonged exercise
 - During low-intensity exercise fat serves as the main energy substrate
Dynamics of Nutrient Metabolism

A. Plasma glucose (μM)

B. Serum fatty acids (μM)

C. Plasma 3-OHbutyrate (μM)

D. Exercise intensity (% of maximum)

A and B show the changes in plasma glucose and serum fatty acids with exercise time. C shows the increase in plasma 3-OHbutyrate with exercise time. D shows the decrease in exercise intensity with exercise time.
Fatigue

- Occurs when exercise continues to the point that compromises liver and muscle glycogen
- Commonly referred to as “hitting the wall”
Lipids

- Lipids are synthesized by plants and animals
- Three groups of lipids
 - Simple
 - Compound
 - Derived
Simple Lipids

- Consist primarily of triacylglycerols (TAG)
 - Major storage form of fat in adipocytes
 - Contain one glycerol and three fatty acid chains
 - The longer the fatty acid chain the less water-soluble the molecule
Fatty Acids

- Saturated fatty acids
 - When the carbon binds to the maximum number of hydrogens
 - Occur primarily in animal products
 - Beef, lamb, pork, egg yolk

- Unsaturated fatty acids
 - Monounsaturated contains one double bond
 - Polyunsaturated contain two or more double bonds
 - Linolenic acid is an essential fatty acid
Composition of Fatty Acids

![Chart showing the composition of fatty acids in various food items.](chart.png)
Review

• Lipids are synthesized by plants and animals.
 a. True
 b. False
Answer

- Lipids are synthesized by plants and animals.

a. True

b. False
TAG Formation
TAG Catabolism

Step 1: Triacylglycerol molecule

Step 2: 1,2-diacylglycerol

Step 3: 2-monoacylglycerol

Glycerol

Fatty acid

H₂O

HSL

HSL

Monoglyceride lipase + HSL

Fatty acid
Trans Fatty Acids

- Health concerns
 - Increases amount of low-density lipoprotein cholesterol (LDL)
 - Decreases amount of beneficial high-density lipoprotein cholesterol (HDL)
Lipids in the Diet

44% Meat, fish, poultry, eggs
24% Dairy
19% Cereal
7% Fruits, vegetables
5% Beans, peas, nuts
1% Fats, oils
Compound Lipids

- Phospholipids have four main functions
 - Interact with water and lipid to modulate fluid movement across cell membranes
 - Maintain the structural integrity of the cell
 - Play important role in blood clotting
 - Provide structural integrity to the insulating sheath that surrounds nerve fibers

- Glycolipids
- Lipoproteins
Lipoproteins

- Four types
 - Chylomicrons – transport Vitamins A, D, E, and K
 - High-density lipoprotein (HDL) – “good” cholesterol
 - Very low-density lipoprotein (VLDL) – transport TAGs to muscle and adipose
 - Low-density lipoprotein (LDL) – “bad” cholesterol
Derived Lipids

- Cholesterol
 - Exists only in animal tissue
 - Diets high in cholesterol can cause increased risk of coronary heart disease and atherosclerosis
Daily Recommended Lipid Intake

- A diet that contains 20% of total calories from lipids
- Replace high fat foods with fruits, vegetables, whole grains, fish, poultry, and lean meat
Role of Lipids in the Body

- Energy source and reserve
 - Carries large quantities of energy per unit weight
 - Transports and stores easily
 - Provides a ready source of energy
- Protection of vital organs
- Thermal insulation
- Vitamin carrier and hunger suppressor
Fat Dynamics in Exercise

- Light to moderate exercise
 - Energy comes from fatty acids

- Moderate intensity exercise
 - Energy comes from equal amounts of carbohydrate and fat supply

- High intensity exercise
 - Carbohydrates, primarily muscle glycogen is the source of energy
Proteins

• Amino acids are the “building blocks”

• Peptide bonds link together amino acids
 – Dipeptide is two amino acids joined together
 – Tripeptide is three amino acids joined together
 – Polypeptide is 50 to more than a 1000 amino acids
Essential Amino Acids

- Amino acids that the body can not synthesize
 - Isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tyrosine, and valanine
Review

What is the name of “bad cholesterol”?

a. High Density Lipoproteins (HDL)
b. Low Density Lipoproteins (LDL)
c. Very Low Density Lipoproteins (VLDL)
d. Chylomicrons
Answer

• What is the name of “bad cholesterol”?
 a. High Density Lipoproteins (HDL)
 b. Low Density Lipoproteins (LDL)
 c. Very Low Density Lipoproteins (VLDL)
 d. Chylomicrons
Protein Sources

- Complete proteins contain all of the essential amino acids
 - Eggs, milk, fish, and poultry
- Incomplete proteins lack one or more of the essential amino acids
 - Vegetables such as lentils, dry beans and peas, nuts, and cereals
Example Food Label

1. **Product name**
2. **Manufacturer name and address**
3. **Weight or measure**
4. **Ingredients in descending order of predominance by weight**
5. **Serving size, number of servings per container, and calorie information**
6. **Nutrition information panel provides quantities of nutrients per serving, in both actual amounts and as “% Daily Values” based on a 2000-Calorie energy intake**
7. **Descriptive terms if the product meets specified criteria**
8. **Approved health claims stated in terms of the total diet**
Daily Recommended Protein Intake

- 0.83g of protein per kg of body mass
 - Stress, disease, and injury increase protein requirements

- Excessive protein intake can have harmful side effects like strained liver and kidney function
Role of Protein in the Body

- Major sources of body protein
 - Blood plasma
 - Visceral tissue
 - Muscle
- Protein makes up 12-15% of body mass
Protein Metabolism

• Process of deamination (nitrogen removal) forms urea which leaves body as urine

• Remaining carbon skeletons from deamination follow one of three diverse biochemical routes
 – Gluconeogenesis
 – Energy source
 – Fat synthesis

• Excessive protein catabolism promotes fluid loss
Nitrogen Balance

- Occurs when nitrogen intake equals nitrogen excretion
 - Positive nitrogen balance
 - Growing children
 - During pregnancy
 - Recovery from illness
 - During resistance exercise training
Nitrogen Balance (continued)

- Negative nitrogen balance
 - Diabetes
 - Fever
 - Burns
 - Dieting
 - Growth
 - Steroid use
 - Recovery from illness
Review

• Can you eat too much protein?
 a. Yes
 b. No
Answer

• Can you eat too much protein?
 a. Yes
 b. No